Allosteric regulation and spatial distribution of kainate receptors bound to ancillary proteins.
نویسندگان
چکیده
A diverse range of accessory proteins regulates the behaviour of most ligand- and voltage-gated ion channels. For glutamate receptor 6 (GluR6) kainate receptors, two unrelated proteins, concanavalin-A (Con-A) and postsynaptic density protein 95 (PSD-95), bind to extra- and intracellular domains, respectively, but are reported to exert similar effects on GluR6 desensitization behaviour. We have tested the hypothesis that distinct allosteric binding sites control GluR6 receptors via a common transduction pathway. Rapid agonist application to excised patches revealed that neither Con-A nor PSD-95 affect the onset of desensitization. The rate of desensitization elicited by 10 mM L-glutamate was similar in control (taufast = 5.5 +/- 0.4 ms), Con-A-treated patches (taufast = 6.1 +/- 0.5 ms) and patches containing PSD-95 and GluR6 receptors (taufast = 4.7 +/- 0.6 ms). Likewise, the time course of recovery from GluR6 desensitization was similar in both control and Con-A conditions, whereas PSD-95 accelerated recovery almost twofold. Peak and steady-state (SS) dose-response relationships to glutamate were unchanged by lectin treatment (e.g. control, EC50(SS) = 31 +/- 28 microM vs Con-A, EC50(SS) = 45 +/- 9 microM, n = 6), suggesting that Con-A does not convert non-conducting channels with high agonist affinity into an open conformation. Instead, we demonstrate that the effects of Con-A on macroscopic responses reflect a shift in the relative contribution of different open states of the channel. In contrast, the effect of PSD-95 on recovery behaviour suggests that the association between kainate receptors and cytoskeletal proteins regulates signalling at glutamatergic synapses. Our results show that Con-A and PSD-95 regulate kainate receptors via distinct allosteric mechanisms targeting selective molecular steps in the transduction pathway.
منابع مشابه
The antinociceptive effect of 17β-estradiol in the paragigantocellularis lateralis of male rats is mediated by estrogenic receptors
Introduction: 17β-Estradiol is a neuroactive steroid and its pain modulatory role has been well studied previously. 17β-Estradiol modulates nociception by binding to its receptors and also by allosteric interaction with other membrane - bound receptors such as glutamate and GABAA receptors. Paragigantocellularis lateralis (LPGi) is also involved in pain modulation and perception, in addition...
متن کاملStructural determinants of allosteric regulation in alternatively spliced AMPA receptors
The flip and flop splice variants of AMPA receptors show strikingly different sensitivity to allosteric regulation by cyclothiazide; heteromers assembled from GluR-A and GluR-B also exhibit splice variant-dependent differences in efficacy for activation by glutamate and kainate. The sensitivity for attenuation of desensitization by cyclothiazide for homomeric GluR-A was solely dependent upon ex...
متن کاملQ/R site editing controls kainate receptor inhibition by membrane fatty acids.
RNA editing within the pore loop controls the pharmacology and permeation properties of ion channels formed by neuronal AMPA and kainate receptor subunits. Genomic sequences for the glutamate receptor 2 (GluR2) subunit of AMPA receptors and the GluR5 and GluR6 subunits of kainate receptors all encode a neutral glutamine (Q) residue within the channel pore that can be converted by RNA editing to...
متن کاملThe role of GABAA receptors in the analgesic effect of intra-paragigantocellularis lateralis injection of 17β-estradiol in male rat
Introduction: 17&beta-Estradiol modulates nociception by binding to the estrogenic receptors and also by allosteric interaction with other membrane-bound receptors like glutamate and GABAA receptors. In addition to its autonomic functions, paragigantocellularis lateralis (LPGi) is involved in the pain modulation, too. The aim of the current study was to investigate the involvement of the membra...
متن کاملRole of the AMPA receptors of paragigantocellularis lateralis nucleus in the inflammatory pain modulation in male rat
Introduction: The 17β-estradiol acts as a neurosteroid in the brain and modulates nociception by binding to the estrogen receptors and also by allosteric interaction with other membrane-bound receptors like glutamate receptors. Paragigantocellularis lateralis nucleus (LPGi) is one of the important brain regions implicated in the pain modulation. So, this study was designed to evaluate the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 547 Pt 2 شماره
صفحات -
تاریخ انتشار 2003